variancePartition - Quantify and interpret drivers of variation in multilevel gene expression experiments
Quantify and interpret multiple sources of biological and technical variation in gene expression experiments. Uses a linear mixed model to quantify variation in gene expression attributable to individual, tissue, time point, or technical variables. Includes dream differential expression analysis for repeated measures.
Last updated 11 days ago
rnaseqgeneexpressiongenesetenrichmentdifferentialexpressionbatcheffectqualitycontrolregressionepigeneticsfunctionalgenomicstranscriptomicsnormalizationpreprocessingmicroarrayimmunooncologysoftware
11.58 score 4 stars 3 packages 1.1k scripts 1.7k downloadsdreamlet - Scalable differential expression analysis of single cell transcriptomics datasets with complex study designs
Recent advances in single cell/nucleus transcriptomic technology has enabled collection of cohort-scale datasets to study cell type specific gene expression differences associated disease state, stimulus, and genetic regulation. The scale of these data, complex study designs, and low read count per cell mean that characterizing cell type specific molecular mechanisms requires a user-frieldly, purpose-build analytical framework. We have developed the dreamlet package that applies a pseudobulk approach and fits a regression model for each gene and cell cluster to test differential expression across individuals associated with a trait of interest. Use of precision-weighted linear mixed models enables accounting for repeated measures study designs, high dimensional batch effects, and varying sequencing depth or observed cells per biosample.
Last updated 25 days ago
rnaseqgeneexpressiondifferentialexpressionbatcheffectqualitycontrolregressiongenesetenrichmentgeneregulationepigeneticsfunctionalgenomicstranscriptomicsnormalizationsinglecellpreprocessingsequencingimmunooncologysoftware
8.37 score 10 stars 123 scripts 198 downloadsremaCor - Random Effects Meta-Analysis for Correlated Test Statistics
Meta-analysis is widely used to summarize estimated effects sizes across multiple statistical tests. Standard fixed and random effect meta-analysis methods assume that the estimated of the effect sizes are statistically independent. Here we relax this assumption and enable meta-analysis when the correlation matrix between effect size estimates is known. Fixed effect meta-analysis uses the method of Lin and Sullivan (2009) <doi:10.1016/j.ajhg.2009.11.001>, and random effects meta-analysis uses the method of Han, et al. <doi:10.1093/hmg/ddw049>.
Last updated 9 months ago
5.56 score 1 stars 4 packages 7 scripts 931 downloadszenith - Gene set analysis following differential expression using linear (mixed) modeling with dream
Zenith performs gene set analysis on the result of differential expression using linear (mixed) modeling with dream by considering the correlation between gene expression traits. This package implements the camera method from the limma package proposed by Wu and Smyth (2012). Zenith is a simple extension of camera to be compatible with linear mixed models implemented in variancePartition::dream().
Last updated 25 days ago
rnaseqgeneexpressiongenesetenrichmentdifferentialexpressionbatcheffectqualitycontrolregressionepigeneticsfunctionalgenomicstranscriptomicsnormalizationpreprocessingmicroarrayimmunooncologysoftware
5.30 score 1 packages 89 scripts 232 downloads